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The fate and transport of a variety of chemicals migrating from industrial and
municipal waste disposal sites, or applied to agricultural lands, is increasingly
becoming a concern. Once released into the subsurface, these chemicals are subject
to a large number of simultancous physical, chemical, and biological processes,
including sorption—desorption, volatilization, and degradation. Depending upon
the type of organic chemical involved, transport may also be subject to multiphase
flow that involves partitioning of the chemical between different fluid phases. Many
models of varying degree of complexity and dimensionality have been developed
during the past several decades to quantify the basic physicochemical processes
affecting transport in the unsaturated zone. Models for variably saturated water
flow, solute transport, aqueous chemistry, and cation exchange were initially devel-
oped mostly independently of each other, and only recently has there been a sig-
nificant effort to couple the different processes involved. Also, most solute transport
models in the past considered only one solute. For example, the processes of adsorp-
tion—desorption and cation exchange were often accounted for by using relatively
simple linear or nonlinear Freundlich isotherms such that all reactions between the
solid and liquid phases were forced to be lumped into a single distribution coefficient,
and possibly a nonlinear exponent. Other processes such as precipitation-dissolution,
biodegradation, volatilization, or radioactive decay were generally simulated by
means of simple first- and/or zero-order rate processes. These simplifying approaches
were needed to keep the mathematics relatively simple in view of the limitations of
previously available computers. The problem of coupling models for water flow and
solute transport with multicomponent chemical equilibrium and nonequilibrivm
models is now increasingly being addressed, facilitated by the introduction of
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more powerful computers, development of more advanced numerical techniques, and
improved understanding of the underlying transport processes.

One major frustrating issue facing soil scientists and hydrologists in dealing with
the unsaturated zone, both in terms of modeling and experimentation, is the over-
whelming heterogeneity of the subsurface environment. Heterogeneity occurs at a
hierarchy of spatial and time scales (Wheatcraft and Cushman, 1991), ranging from
microscopic scales that involve time-dependent chemical sorption and precipitation—
dissolution reactions, to intermediate scales that involve the preferential movement
of water and chemicals through macropores or fractures, and to much larger scales
that involve the spatial variability of soils versus depth or across the landscape.
Several lines of research are being followed to deal with the different types of soil
heterogeneity. On the one hand, subsurface heterogeneity can be addressed in terms
of process-based deterministic descriptions which attempt to consider the effects of
heterogeneity at one or several scales (kinetic sorption, preferential flow, field-scale
spatial variability). On the other hand, subsurface heterogeneity is often also
addressed using stochastic approaches which incorporate certain assumptions
about the transport process in the heterogeneous system (e.g., Jury and Roth,
1990; Dagan, 1993; Russo, 1993). Much can be learned from both approaches.

In this chapter, we will focus on alternative conceptual approaches for determi-
nistic modeling of solute transport in variably saturated media. Among the topics
discussed are single-ion equilibrium and nonequilibrium transport, sorption, degra-
dation, volatilization, and multicomponent transport. Transport in variably satu-
rated structured systems is treated in somewhat more detail to illustrate the
potential value of numerical models as useful tools for improving our understanding
of the underlying transport processes at the field scale. We also briefly review recent
developments in numerical techniques used for solving the governing flow and trans-
port equations, including methods for solving large sparse matrices resulting from
spatial and temporal numerical discretization.

Water Flow and Single-Species Solute Transport

Governing Flow and Transport Equations

Predictions of flow and transport in the vadose zone are traditionally based on the
Richards equation that describes variably saturated water flow and the advection—

dispersion equation that describes solute transport. For one-dimensional systems,
these equations are given by

3 9 oh
=5 [K(h)-a; - K(h)] -8 (6.1)

a(ps) + a(dc) _ d 0 ac
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respectively, where 8 is the volumetric water content, / is the soil-water pressure head
(negative for unsaturated conditions), ¢ is time, z is distance from the soil surface
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downward, K is the hydraulic conductivity as a function of / or 8, s is the solute
concentration associated with the solid phase of the soil, ¢ is the solute concentration
of the liquid phase, p is the soil bulk density, D is the solute dispersion coefficient, S
and ¢ are sinks or sources for water and solutes, respectively, and q is the volumetric
fluid flux density given by Darcy’s law as

q= —K(h)% + K(h) (6.3)

Similar equations may be formulated for multidimensional flow and transport,

Assuming linear sorption such that the adsorbed concentration (8) is linearly
related to the solution concentration (c) through a distribution coefficient, kj (i.c.,
s = kpc), equation (6.2) reduces to the simpler form

WOR) _ 0 (91)95 — qc> +é (6.4)

d z\ oz
where R =14 pkp/6 is the solute retardation factor. For conditions of steady-state
water flow in homogeneous soils and in the absence of source or sink terms (S and

#), equation (6.4) further reduces to the standard advection—dispersion equation
(ADE):

oc & ac

—_pls_ % 3
ot 2 Vaz (6.5)

where v = /6 is the average pore-water velocity.

While models based on equations (6.1) and (6.2) have proved to be important
tools in research and management, they are subject to a large number of simplifying
assumptions and complications that compromise or limit their applicability (Nielsen
et al., 1986). It may be instructive to list here some of these assumptions and com-
plications. For example, the equations assume that (1) the air phase plays a relatively
minor role during unsaturated flow, and hence that a single equation can be used to
describe variably saturated flow; (2) Darcy’s equation is valid at both very low and
very high flow velocities (including those occurring in structured soils); (3) osmotic
and electrochemical components of the soil water potential are negligible; (4) the
fluid density is independent of the solute concentration; and (5) matrix and fluid
compressibilities are relatively small. The equations are further complicated by (6)
the hysteretic nature of especially the soil water-retention function, 6(h); (7) the
extreme nonlinearity of the hydraulic conductivity function, K(h); (8) the lack of
accurate and inexpensive methods for measuring the unsaturated hydraulic proper-
ties; (9) the extreme heterogeneity of the subsurface environment; and (10) incon-
sistencies between the scale at which the hydraulic and solute transport parameters in
equations (6.1) and (6.2) are usually measured, and the scale at which the predictive
models are being applied. In addition, equations (6.1) and (6.2) are formulated for
isothermal soil conditions. In reality, most physical, chemical, and microbial pro-
cesses in the subsurface are strongly influenced by soil temperature. This also applies
to water flow itself, including the effects of temperature (Constantz, 1982; Hopmans
and Dane, 1986) and the concentration and ionic composition of the soil liquid phase
(Dane and Klute, 1977; Suarez and Simiinek, 1996) on the unsaturated soil hydraulic
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properties. Hence, a complete description of vadose zone transfer processes also
requires consideration of heat flow and its nonlinear effects on most processes taking
place in the soil-plant system.

Root Water Uptake

An important term in the variably saturated flow equation (6.1) is the source/sink
term S used to account for water uptake by plant roots. Widely different approaches
exist for simulating water uptake (Molz, 1981). Many of the early studies of root

water uptake (e.g., Whisler et al., 1968; Bresler et al., 1982) used uptake functions of
the general form

S(z, 1) = b1 (2)KO)h, — h(z, 1)] (6.6)

where £, is an effective root-water pressure head at the root surface and b, is a depth-
dependent proportionality constant often referred to as the root effectiveness func-
tion. Equation (6.6) may be viewed as a finite difference approximation of Darcy’s
law across the soil-root interface. Anther class of models for root water uptake is
given by (Feddes et al., 1978; Vanclooster et al., 1994)

S(z, 1) = =by(2)a; (h(z, )T, (6.7)

where b, is the potential root water uptake distribution function which integrates to
unity over the soil root zone, «; is a dimensionless water stress response function
between 0 and 1, and 7, is the potential transpiration rate.

The effects of soil salinity on water uptake may be accounted for by linearly
adding the osmotic head, n, to the pressure head, A(z, t) in equations (6.6) or (6.7)
(Bresler and Hoffman, 1986; Cardon and Letey, 1992a, 1992b), or by incorporating
into equation (6.7) a separate salinity response function, a,(r), somewhat similar to
oy (h), to obtain (van Genuchten, 1987; Simtinek ad Suarez, 1994)

S(z, 1) = —by(2)a; (h(z, D)ey(n(z, NT, (6.8)

Cardon and Letey (1992a, 1992b) showed that approaches based on equation (6.7)
may be more appropriate than equation (6.6), particularly if suitably modified and
used for saline conditions. Still, as pointed out by Nielsen et al. (1986), the above two
classes of root water uptake models are essentially empirical by containing para-
meters that depend on specific crop, soil, and environmental conditions. Much
research remains needed in the development of realistic process-based models of
root growth and root water uptake as a function of various stresses (water, salinity,

temperature, nutrients, and others) in the root zone, and to couple these descriptions
with suitable crop growth models.

Linear Equilibrium Solute Transport

The term 3(ps)/8t in equation (6.2) may be used to account for the effects of sorption
or exchange on solute transport. Most often, a linear equilibrium isotherm, s = kpc, is
used to describe solute interactions between the liquid and solid phases of the soil,
leading to a constant retardation factor R in equation (6.4). The resulting advection—
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dispersion equation given by equation (6.5) has been reasonably successful in describ-
ing solute transport data for relatively uniform laboratory or field soils. As an exam-
ple, figure 6.1 shows solute breakthrough curves typical of the transport of an
excluded anion, Cl-, an essentially nonreactive solute (tritiated water, 3H20), and
an adsorbed tracer, Cr™, through homogeneous soil columns. The first two tracers
pertain to transport through 30-cm-long columns that contain disturbed Glendale
clay loam (P. J. Wierenga, 1972, unpublished data; van Genuchten and Cleary, 1979),
while the Cr®* data are for transport through a 5-cm-long column of sand (P. J.
Wierenga, 1972, unpublished data). The data in figure 6.1 are plotted versus number
of pore volumes (T = vt/L) of tracer solution leached through the columns. Analysis
of the breakthrough curves in terms of the ADE by using inverse procedures (van
Genuchten, 1981) yielded R-values of 0.681, 1.027, and 1.248, respectively, for the
three tracers. Hence, Cl~ was strongly affected by anion exclusion (R < 1: kp < 0)
caused by the repulsion of chloride anions from negatively charged surfaces of clays
and ionizable organic matter. Because water flow velocities are zero along pore walls,
and maximum in the center of pores, anions such as CI™ can travel much faster than
water, especially in fine-textured soils. By comparison, *H,0 did travel with nearly the
same velocity as water (R = 1.027), while Cr®" was about 25% slower (R = 1.248).

Nonlinear Adsorption

The assumption of a linear isotherm can greatly simplify the mathematics of a
transport problem; unfortunately, sorption and exchange reactions are generally
nonlinear and often depend also on the presence of competing species in the soil
solution. The solute retardation factor for nonlinear adsorption is then not constant
anymore, as was the case for linear adsorption, but will change as a function of the
slope ds/dc of the adsorption isotherm s(c) as follows:

p ds(c)

=147~ 6.9
R 1+9 ~ (6.9)
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A variety of models are available to describe nonlinear adsorption—desorption. Table
6.1 Iists some of the most commonly used sorption isotherms that relate the adsorbed
concentration, s, to the solution concentration, ¢. Although several of the equations
in table 6.1 (e.g., the Langmuir and Freundlich equations) can be derived rigorously,
such as for the adsorption of gases onto solids, the expression are generally used only
in an empirical fashion. Of the equations listed in table 6.1, the most popular sorp-
tion models are the Langmuir, Freundlich, and Temkin equations.

A general classification of adsorption as reflected by different features of the
adsorption isotherm, such as the initial slope, the presence or absence of a plateau,
or the presence of a maximum, was proposed by Giles et al. (1960). They divided
possible adsorption processes into four main classes; S, L (Langmuir), H (high-
affinity), and C (constant partitioning) isotherms, and discussed mechanisms that
explain the different types of isotherms. Increasing solution concentrations led to
increasing or decreasing adsorption rates for the convex S and concave L isotherms,
respectively (figure 6.2). An H isotherm is characterized by extremely high affinities

Table 6.1 Equilibrium Adsorption Equations (van Genuchten and Cleary, 1979;
Barry, 1992)

Equation Model Reference(s)

s=kic+ky Linear Lapidus and Amundson
(1952); Lindstrom et al.
(1967)

s =k Freundlich Freundlich (1909)
T Langmuir Langmuir (1918)
T+ & 8

kl ij
= T Freundlich-Langmuir  Sips (1950)
1+ kycfs

5= kre + il Double Langmuir Shapiro and Fried (1959)
- 1 + sz 1 + k4C g p |

s= klc"kz/k3 Extended Freundlich Sibbesen (1981)

§=- kre - Gunar Gunary (1970)

T 1+ kyc+ kyn/c y i

5=k — Iy Fitter-Sutton Fitter and Sutton (1975)

s=k{l-[1+ kzck3]k“} Barry Barry (1992)

RT . - .

5= Tln (kyc) Temkin Bache and Williams (1971)

gl

s = kycexp(—2k,s) Lindstrom et al. (1971);

van Genuchten et al. (1974)

2. e+ k(e — o) expika(cr — 20)}17' Modified Kielland Lai and Jurinak (1971)
ST

ki, ky, k3, k4, Empirical constants; R, universal gas constant; T, absolute temperature; ¢, maximum solute
concentration; sy, maximum adsorbed concentratior.
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of the exchanger for exchangeable ions, whereas a C isotherm reflects constant
partitioning of the solute between the solution and adsorbed phases. We note that
the shape of an isotherm can have significant impacts on the transport predictions.
For example, S and L isotherms lead to unfavorable and favorable exchange situa-
tions, respectively, with the latter condition (e.g., for a Freundlich isotherm with
k, <« 1) producing sharp concentration fronts during transport in a soil profile. The
effects of isotherm nonlinearity on solute front sharpening and front broadening
have been discussed at length in the literature (e.g., Bolt, 1979; Schweich and
Sardin, 1981; van der Zee and van Riemsdijk, 1994).

Nonequilibrium Transport

Application of the above equilibrium models to single-ion transport through
repacked laboratory or relatively uniform field soils has been fairly successful. The
equilibrium approach, however, has not worked well in several situations, most
notably for many strongly adsorbed solutes, many organic chemicals, and when
used for simulating transport in structured (aggregated) media. A number of chemi-
cal-kinetic and diffusion-controlled “physical” models have been proposed to
describe nonequilibrium transport.

Early models for nonequilibrium transport generally assumed relatively simple
first-order type (one-site) kinetic rate equations. More refined nonequilibrium models
introduced later invoked the assumptions of two-site or multisite sorption, and/or
two-region (dual-porosity) transport that involves solute exchange between mobile
and relatively immobile liquid regions. Models of this type generally resulted in
better descriptions of observed laboratory and field transport data, mostly because
of additional degrees of freedom in fitting observed concentration distributions. The
different nonequilibrium approaches are briefly reviewed below.

One-Site Sorption Models

The simplest nonequilibrium formulation arises when a first-order linear kinetic rate
process is assumed. Ignoring any solute production or decay in the adsorbed phase,
equation (6.2) is then augmented with the equation

2 = aflpe — 9 (6.10)
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where « is a first-order kinetic rate coefficient. Transport models using the above
one-site kinetic sorption equation have generally resulted in only modest improve-
ments in terms of their ability to match observed displacement data (e.g., Davidson
and McDougal, 1973; van Genuchten et al., 1974). Success was usually limited only
to experiments conducted at relatively low flow velocities; that is, for conditions
where the equilibrium model already performed reasonably well. Moreover, one or
both of the sorption parameters (kj and ), when adjusted to get better transport
predictions, were often found to vary as a function of the pore-water velocity. Similar

limitations hold for most or all of the other nonequilibrium rate expressions listed in
table 6.2.

Two-Site Chemical Nonequilibrium Transport

The one-site first-order kinetic model may be expanded into a two-site sorption
concept by assuming that sorption sites can be divided into two fractions (Selim et
al., 1976): sorption on one fraction (type 1 sites) is assumed to be instantaneous while
sorption on the remaining (type 2) sites is considered to be time-dependent.
Assuming a linear sorption process, the complete two-site transport model is given
by (van Genuchten and Wagenet, 1989)

d d oc )
3 (0 +fpkp)c = Py <9D§ - qc) —apl(1 = kpe — s3] = Oue — fokyupe  (6.11)
| 95y .
i al(1 = fkpe — 53] — 18y (6.12)

where w; and 1 are first-order decay constants for degradation in the liquid and
sorbed phases, respectively, f is the fraction of exchange sites assumed to be at

Table 6.2 Nonequilibrium Adsorption Equations (van Genuchten and Cleary, 1979)

Equation Model Reference(s)
a_s =alkjc+ky —s) Linear Lapidus and Amundson
8; (1952); Oddson et al. (1970)
5= alk, > — ) Freundlich Hornsby and Davidson
! (1973); van Genuchten et al.
, (1974)
-?-5 = a(l —]i(—llizc - s> Langmuir Hendricks (1972)
as klck3 . . S o
—=al—-3 Freundlich-Langmuir ~ Simtnek and van Genuchten
at 1+ szkJ
(1994)
9 = a(sy — s)sinh (/q 57~ S) Fava and Eyring (1956)
ot S — 8§
% = aexp(kys){ky e exp(=2kss) — 5} Lindstrom et al. (1971)
g_i = achigh Leenheer and Ahlrichs (1971);

Enfield et al. (1976)
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equilibrium, and the subscripts 1 and 2 refer to equilibrium (type 1) and kinetic (type
2) sorption sites, respectively. Note that if Jf =0, the two-site sorption model reduces
to the one-site fully kinetic sorption model, i.e., only type 2 kinetic sites are present.
On the other hand, if f = 1, the two-site sorption model reduces to the equilibrium
sorption model. The two-site sorption model has been quite successful in describing a
large number of mostly laboratory-type miscible displacement experiments that
involve a variety of organic and inorganic chemicals undergoing adsorption (Rao
et al,, 1979; Hoffman and Rolston, 1980; Parker and Jardine, 1986; Gonzalez and
Ukrainczyk, 1999, among many others).

Two-Region Physical Nonequilibrium Transport

The two-region physical nonequilibrium transport model assumes that the liquid
phase can be partitioned into distinct mobile (flowing) and immobile (stagnant)
liquid pore regions, and that solute exchange between the two liquid regions can
be modeled as an apparent first-order exchange process. Using the same notation as

before, the two-region transport model is given by (van Genuchten and Wagenet,
1989)

] d ac
&' (Qm +f:0kD)cm = 'a‘Z‘ <6mDm _8‘51' - qcm) - Ol(cm - Cim) - (emﬂl,m +fka:u's,m)cm

(6.13)

8Cim

[Bim + (] —f)ka] 9t = Of(Cm - Cim) - [eim:ufl,im + (1 —f)katu’s,im]cim (614)

where the subscripts m and im refer to the mobile and immobile liquid regions,
respectively, the subscripts / and s refer to the liquid and sorbed phases, respectively,
J represents the fraction of sorption sites that equilibrates with the mobile liquid
phase, and « is a first-order mass transfer coefficient that governs the rate of solute
exchange between the mobile and immobile liquid regions. The two-region physical
nonequilibrium model has been successfully applied to laboratory-scale transport
experiments that involve a large number of tracers (tritiated water, chloride, different
organic chemicals, heavy metals) as shown in studies by Gaudet et al. (1977) van
Genuchten et al. (1977), and Gaber et al. (1995), among others. As an example,
figure 6.3 shows breakthrough curves for the pesticide 2,4,5-T (2,4,5-trichlorophe-
noxyacetic acid) obtained from a 30-cm-long soil column that contained aggregated
(<6 mm in diameter) Glendale clay loam (van Genuchten et al., 1987). Notice that
the two-region model (TRM) provides an excellent description of the data, whereas
the advection—dispersion equation (ADE) could not be made to fit the data.

A close comparison of the two-site and two-region nonequilibrium models shows
that both have the same mathematical structure. As shown previously by Nkedi-
Kizza et al. (1984) and Toride et al. ( 1993), among others, the two models can be put
into the same dimensionless form by using appropriately selected dimensionless
parameters. Because the same dimensionless transport equations apply to concep-
tually different transport situations, it also follows that breakthrough curves such as
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Figure 6.3 Observed and calculated effluent curves for 2,4,5-T movement through
Glendale clay loam. The fitted curves were based on (a) the classical ADE and (b)
two-region TRM transport models. (After van Genuchten et al., 1987.)

those shown in figure 6.3 generally contain insufficient information to differentiate
between specific physical (mobile-immobile type) and chemical (kinetic type) pro-
cesses that lead to nonequilibrium, unless nonadsorbing tracers are considered.
Hence, independent parameter estimates are generally needed to effectively differ-
entiate between presumed two-site and two-region nonequilibrium phenomena. On
the other hand, the mathematical similarity of the two-site and two-region models
also suggests that the two formulations may be used to macroscopically describe
transport without having to delineate the exact physical and chemical processes at

the microscopic level.
Vapor-Phase Transport and Volatilization

Vapor-phase transport and volatilization from the soil surface are increasingly recog-
nized as being important processes that affect the field behavior of many organic
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chemicals, including pesticides, gasoline, and such industrial solvents as TCE and
CCl, (Glotfelty and Schomburg, 1989; Mercer and Cohen, 1990; Yates et al., 1996).
While many organic pollutants dissipate by means of chemical and microbiological
degradation, volatilization may be equally important for volatile substances. A thor-
ough understanding of vapor-phase transport is important for the proper design of
in situ remediation techniques [such as air sparging and soil venting (DiGiulio, 1992)]
for cleaning up hazardous waste sites contaminated with nonaqueous-phase liquids
(NAPLs). The process of volatilization has gained additional interest recently
because of concerns of the effects of a variety of gases, such as methyl bromide,
on stratospheric ozone. Methyl bromide has been used for many decades as an
effective soil fumigant for the control of nematodes, weeds, and fungi, but is now
suspected to cause significant damage to the ozone layer (Gan et al., 1997).

The volatility of a chemical is influenced by many factors, most important being
the physicochemical properties of the chemical, soil texture and water content, and
several environmental parameters, such as temperature and solar energy (Taylor and
Spencer, 1990). Even though only a small fraction of a volatile chemical may exist in
the gas phase, air-phase diffusion rates can be much larger than those in the liquid
phase since gas-phase diffusion coefficients are about 10* times greater than those in
the liquid phase. The solute tranport equation for volatile solutes may be written in
the following general form (e.g., Wang et al., 1998):

3(os) + a(6c) + dag) 8 <9Dw 0

c og .
— = _g.c—q.g .1
o T aD, 5 ¢ qag) + ¢ (6.15)

ot 3t o oz

where a is the volumetric air content, g is the solute concentration associated with the
gas phase, D,, and D, are the solute dispersion coefficients in the liquid and gaseous
phases, respectively, and ¢,, and g, are the volumetric fluid flux densities of the liquid
and gaseous phases, respectively.

Assuming linear equilibrium sorption and volatilization such that the adsorbed ()
and gaseous (g) concentrations are linearly related to the solution concentration (©)
through distribution coefficients, kp (Le., s=kpc) and ky (ie., g = kyc), respec-
tively, equation (6.13) reduces to the simpler form of equation (6.4), where g = q, +
daky is the effective fluid flux density, R =1 + (0kp + aky)/6 is the solute retarda-
tion factor, and D = D,, + aDky /6 is the effective dispersion coefficient. For con-
ditions of steady-state water and gas flow in homogeneous soils, and neglecting the
source/sink term ¢, equation (6.13) reduces to the standard advection—dispersion
equation (6.5), where v = (q,, + q)aky)/0 is the average pore velocity.

Degradation

The source/sink term ¢ in equation (6.2) may be used to account for nutrient uptake
and/or a variety of chemical and biological reactions and transformations insofar as
these processes are not already included in the sorption/exchange term dps/d. Solute
reactions and transformations can be highly dynamic and nonlinear in time and
space, especially for nitrogen and pesticide products. For example, among the nitro-
gen transformation processes that may need to be considered are nitrification, deni-
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trification, mineralization, and nitrogen uptake by plants (Stevenson, 1982). For
microbially induced organic and inorganic transformations, the degradation process
should also consider the growth and maintenance of soil microbes.

Alexander and Scow (1989) gave a review of some of the equations used to
represent the kinetics of biodegradation. These equations include zero-order, half-
order, first-order, three-half-order, mixed-order, logistic, logarithmic, Michaelis-
Menton, and Monod type (with or without growth) expressions. Possible biological
degradation equations are listed in table 6.3. While most of these expressions have a
theoretical basis, they are commonly used only in an empirical fashion by fitting the
equations to observed data. Zero- and first-order kinetic equations remain the most
popular models for describing the biodegradation of organic compounds, mostly
because of the simplicity and ease in which these equations can be incorporated in
solute transport models. Conditions for the application of zero- and first-order
biodegradation equations are given by Alexander and Scow (1989).

One special group of degradation reactions involves decay chains in which solutes
are subject to sequential (or consecutive) decay reactions. Problems of solute trans-
port that involves sequential first-order decay reactions frequently occur in soil and
groundwater systems. Examples are the migration of various radionuclides (Rogers,
1978), the simultaneous movement of Interacting nitrogen species (Cho, 1971),
organic phosphate transport, and the transport of certain pesticides and their meta-
bolites (Wagenet and Hutson, 1987; Simtinek and van Genuchten, 1994; Simtinek et
al., 1998).

Multicomponent Solute Transport

Except for the above decay chains, thus far we have considered the transport of only
one chemical species, and hence assumed that the behavior of a solute is independent

Table 6.3 Biological Degradation Equations

Equation ' Model
o= —kc First-order kinetics
¢ = —k Zero-order kinetics
=~k Power rate kinetics
= — Lmad Monod, Michaelis-Menten kinetics
KS +c
_ _ Mmax¢ (co+ Xo — ©) Monod with growth kinetics
KS +c
HmaxC

= Haldane modification of Monod kinetics
K+ c+c*/K;

= —fUmax{co + Xy — ©) Logarithmic kinetics
= —kc(cg + Xy — ¢) Logistic kinetics

ky, ky, Empirical constants; ji,,,,, maximum specific degradation; Ky, substrate concentration when the rate
of decay is half the maximum rate; ¢, initial substrate concentration; X,, amount of substrate required to
produce the initial population; K;, inhibition constant that reflects the suppression of the growth rate by a
toxic substrate rate.
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of other species present in the soil solution. In reality, the soil liquid phase always
contains a mixture of many ions which mutually may interact, create complex spe-
cies, precipitate, dissolve, and/or compete with each other for sorption sites on the
solid phase. In this section, we give a very brief review of such more complex situa-
tions that involve multicomponent transport. More comprehensive reviews are given

v

by Yeh and Tripathy (1989), Mangold and Tsang (1991), and Suarez and Siminek
(1996).

Attempts to model multicomponent transport initially focused primarily on the
saturated zone, where changes in the fluid flux, temperature, and pH are relatively
gradual and hence less important than in the unsaturated zone. Consequently, most
multicomponent transport models assume one- or two-dimensional steady-state
saturated water flow. Typical examples are given by Valocchi et al. (1981), Bryant
et al. (1986), and Walter et al. (1994). Only recently have multicomponent transport
models become more popular for application also to variably saturated flow pro-
blems (Liu and Narasimhan, 1989; Yeh and Tripathi, 1991; Simtinek and Suarez,
1994). :

In a recent review, Yeh and Tripathi (1989) identified three different approaches
for mathematically solving multicomponent transport problems: (1) a mixed differ-
ential and algebraic approach, (2) a direct substitution approach, and (3) a sequential
iteration approach. In the first approach, the sets of differential and algebraic equa-
tions that describe the transport processes and chemical reactions, respectively, are
treated simultaneously (Miller and Benson, 1983; Lichtner, 1985). In the second
approach, the algebraic equations that represent the nonlinear chemical reactions
are substituted directly into the differential mass balance transport equations (Rubin
and James, 1973; Jennings et al., 1982). The third approach considers two coupled
sets of linear partial differential and algebraic equations, which are solved sequen-
tially and iteratively (Walsh et al., 1984; Yeh and Tripathi, 1991; Simiinek and
- Suarez, 1994; Walter et al., 1994). Based on a study of computer resource require-
ments, Yeh and Tripathi (1989) suggested that only the third method (sequential
iteration) can be applied to realistic multidimensional problems.

As an example, the partial differential equations that govern one-dimensional
multicomponent advective-dispersive chemical transport during transient variably
saturated flow may be written as (Simtnek and Suarez, 1994)

M + @ & 9 <9 3Ck

= Dg—qck) k=1,2,...,N, (6.16)

o P TP T
where ¢, is the total dissolved concentration of aqueous component % (i.e., the sum of
the component plus all complex species that contain component k), Cx 18 the total
sorbed concentration of the aqueous component k, ¢, is the total precipitated con-
centration of aqueous component k (i.e., the sum of all precipitated species that
contain the component k), and N, is the number of aqueous components. The second
and third terms the left-hand side of equation (6.16) are zero for components that do
not undergo ion exchange or precipitation—dissolution reactions. The total concen-
tration of a component k, defined as the sum of the dissolved, sorbed, and mineral
concentrations, is influenced only by transport processes which act on the solution
concentration ¢, but not by chemical reactions (Zysset et al., 1994). However, the
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relative fraction of a component in each of the three phases (soiution, sorbed,
mineral) depends strongly on the specific chemical processes in the system.
Therefore, equation (6.16) must be augmented with a set of equations that describe
the different equilibrium or nonequilibrium chemical reactions, such as complexa-
tion, cation exchange, adsorption—desorption, and precipitation—dissolution (Yeh
and Tripathi, 1989). The above coupled approach that involves transport and che-

mical submodules was used also by Walsh et al. (1984), Cederberg et al. (1985), and
Yeh and Tripathi (1991).

Transport in Structured Media

Field soils generally exhibit a variety of structural features, such as interaggregate
pores, earthworm or gopher holes, decayed root channels, or drying cracks in fine-
textured soils. Water and dissolved chemicals can move along preferred pathways in
such structured media at rates much faster than what normally can be predicted with
models based on the classical Richards and ADE equations. The resulting preferen-
tial-flow process has been shown to occur not only in aggregated field soils (Beven
and Germann, 1982) and unsaturated fractured rock (Wang, 1991), but also in
seemingly homogeneous soils because of fingering or some other unstable flow pro-
cess (Parlange and Hill, 1976; Hillel, 1993). An important implication of preferential
flow is the accelerated movement of surface-applied fertilizers, pesticides, or other
pollutants into and through the unsaturated zone.

Deterministic descriptions of preferential flow in structured media are often based
on dual-porosity, two-region, or bicontinuum models. Models of this type assume
that the medium consists of two interacting pore regions, one associated with the
macropore or fracture network, and one associated with the micropores inside soil
aggregates or rock matrix blocks. Different formulations arise depending upon how
water and solute movement in the micropore region are modeled, and how the
micropore and macropore regions are coupled.

Geometry-Based Models

A rigorous analysis of transport in structured soils can be made when the medium is
assumed to contain geometrically well-defined cylindrical, rectangular, or other types
of macropores or fractures. Models may be formulated by assuming that the che-
mical is transported by advection, and possibly by diffusion and dispersion, through
the macropores, while diffusion-type equations are used to describe the transfer of
solutes from the larger pores into the micropores of the soil matrix. As an example,
the governing equations for transport through media that contain parallel rectangu-
lar voids (figure 6.4) are given by (e.g., van Genuchten and Dalton, 1986).

ac, Fes dcy

2R 2L 49 R
f f at m-im az
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s
g,
Y
)

Figure 6.4 Schematic of rectangular
porous matrix blocks of width 2a. The
blocks, arranged as parallel slabs, are

separated by a fracture pore system of
width 25b.

e

ac 82ca
R‘m—#:DaW’ (—a§x§a) (618)
1/ :
iz, ) = ;/ ez, x, t)ydx (6.19)
0

where the subscripts f and m refer to the interaggregate (fracture /) and intra-
aggregate (matrix m) pore regions, respectively, c,(z, x, f) is the local concentration -
in the aggregate, x is the horizontal coordinate, and D, is the effective soil or rock
matrix diffusion coefficient. Equation (6.17) describes vertical advective—dispersive
transport through the fractures, while equation (6.18) accounts for linear diffusion in
slab of width 2a in the horizontal (x) direction. Equation (6.19) represents the
average concentration of the immobile soil matrix liquid phase. Equations (6.18)

and (6.19) are coupled using the assumption of concentration continuity across the
fracture-matrix interface:

ca(z, a, t) = cp(z, 1) (6.20)

The water contents 9, and 9, in equation (6.17) are given in terms of the bulk soil
volume; that is,

0f = erf, ﬁm = (1 - Wf)em (621)

where wy is the volume of the fracture pore system relative to that of the total soil
pore system. The total water content (6) of the fracture-matrix system is given by the
sum of ¥, and 9,,.

Similar models to that above may be formulated for other aggregate or soil
matrix geometries. Geometry-based transport models have been successfully applied
to laboratory-scale experiments as well as to selected field studies that involve mostly
saturated conditions. As an example, figure 6.5 shows calculated and observed Cl
effluent curves from a 76-cm-long undisturbed column of fractured clayey till. The
extremely skewed (nonsigmoidal) shape of the effluent curve is a direct result of
water and dissolved cherical moving mostly through the fractures and bypassing
the soil matrix, but with diffusion taking place between the fractures and the fine-
textured matrix. Sudicky et al. (1985) also demonstrated the skewing effect of matrix
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Figure 6.5 Measured breakthrough curve for Cl transport through fractured clayey
till (open circles; data from Grisak et al., 1980). The solid line was obtained with the
exact solution (e.g., van Genuchten, 1985) of equations (6.17) through (6.20), using
parameter values given by Grisak et al., 1980). The dashed line was obtained by

ignoring dispersion in the interaggregate region (Dy = 0) and allowing the fracture
spacing to go to infinity (@ — 00).

diffusion on the shape of an effluent curve by means of two-dimensional, saturated
sandbox studies in which a Cl tracer migrated through a thin sand layer sandwiched
between the two silt layers.

Several studies exist in which the above geometry-based approach has been
extended to transient flow conditions. The approach assumes that the flow and
transport equations of the macropore or fracture network of prescribed geometry
can be solved simultaneously and in a fully coupled fashion with the corresponding
equations for the porous matrix. Discrete-fracture numerical models of this type
include those by Sudicky and McLaren (1992) for application to two-dimensional
saturated flow and aqueous-phase transport problems, and those by Shikaze et al.
(1994) for two-dimensional gas-phase flow and transport through a network of
vadoze zone fractures embedded in a variably saturated porous matrix. The dis-
crete-fracture flow and transport model of Sudicky and McLaren (1992) was
recently extended by Therrien and Sudicky (1996) to three dimensions and variably
saturated conditions by solving the Richards equation both along the network of
interconnected fracture planes and in the adjoining porous matrix. They super-
imposed a network of two-dimensional finite elements that represent the intercon-
necting fractures onto the mesh of three-dimensional elements that represent the
matrix. Their fully coupled approach assumes continuity in pressure head znd
concentration at the fracture-matrix interface, thus permitting a simultaneous solu-
tion of the Richards and transport equations for both the fracture network and the
porous matrix without a need to explicitly calculate fluxes between the two regions.
By solving the Richards equation also for the soil matrix region, the model of
Therrien and Sudicky (1996) accounts for water flow into and through the matrix
domain.



ADVANCES IN VADOSE ZONE FLOW AND TRANSPORT MODELING 171

While geometry-based models are conceptually attractive, they may be too com-
plicated for routine applications since structured field soils usually contain a mixture
of aggregates of various sizes and shapes. More important, the problem of macro-
pore and fluid flow continuity is not easily addressed with geometry-based flow
models. The issue of fluid flow continuity may be especially critical in the vadose
zone because of possible preferential flow and channeling within the fracture domain
itself during unsaturated conditions. Also, preferential flow paths may well change
with the degree of saturation during unsaturated flow. Some of these processes are
more easily considered by using first-order models as discussed below.

Equivalent First-Order Exchange Models

\ather than using geometry-based transport models, many of the preferential flow
features can also be accounted for by using models that assume simple first-order
exchange of solutes by diffusion between the macropore (mobile) and micropore
(immobile) liquid regions. The governing equations then become identical to those
used previously for physical nonequilibrium transport; that is, equations (6.13) and
(6.14). Ignoring the degradation terms in equations (6.13) and (6.14) and assuming
steady-state water flow, the dual-porosity model becomes

dcr dc P, dcy
SR —L+9, R " —9.D. L 55, %S 6.22
P8 g OB = Oy Dy = Of vy 6.22)
ac,,
ﬁmRm_-at = alcy — cp) (6.23)

where «, as before, is a first-order solute mass transfer coefficient that characterizes
diffusional exchange of solutes between the mobile and immobile liquid phases.
Notice that equation (6.22) is identical to equation (6.17) for the rectangular geo-
metry-based model. The mass transfer coefficient is of the general form

o= @fj_)z (6.242)
D
o= (i;?—l)z (6.24b)

where B is a geometry-dependent shape factor and « is the characteristic length of the
aggregate (e.g., the radius of a spherical or solid cylindrical aggregate, or half the
width of a rectangular aggregate). Equation (6.24b) holds for a hollow cylindrical
macropore for which £, = b/a, where a now represents the radius of the macropore
and b the outer radius of the cylindrical soil mantle that surrounds the macropore.
The value of B ranges from 3 for rectangular slabs to 15 for spherical aggregates
(Bolt, 1979; van Genuchten and Dalton, 1986; Sudicky, 1990).

Extension to Variably Saturated Flow

Different types of models have been proposed to extend the above first-order dual-
porosity approach to variably saturated structured media (Wang, 1991; Zimmerman
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et al., 1993). Here, we summarize the dual-porosity model developed by Gerke and
van Genuchten (1993, 1996). This model assumes that the Richards equation for
transient water flow and the advection—dispersion equation for solute transport can
be applied to each of the two pore systems. Similar to the first-order mobile~immo-
bile approach, water and solute mass transfer between the two pore systems is
described with first-order rate equations. The flow equations for the fracture (sub-
script /) and matrix (subscript m) pore systems are, respectively,

By 8 ( oy r,
oh d oh r
C, 2m_ 9 (g O _ w .
"ot 8z ( ™ 9z Km) Tz wr (6.26)

where T, describes the rate of exchange of water between the fracture and matrix
regions:

Iy = aw(hf - hm) (627)
in which a,, is a first-order mass transfer coefficient for water:

a =Koy, 6.28)

where 8 and a are the same as before, K, is the hydraulic conductivity of the
fracture-matrix interface, and y,, (= 0.4) is a dimensionless scaling factor. The solute
transport equations for the fractures and matrix are given by, respectively,

] d 8cf Fs
3 ' 3 3, I,
E(emRmcm) — E (emDm?Z" - chm) + 1_—_14); (630)

where I'; is the solute mass transfer term given by

lenyf/G, F)v > 0

I—‘wﬁmcm/gy Fw <0 (63 1)

Iy =aley —cp) + {
in which « is the same as used in the first-order mobile~immobile model. The first
term on the right-hand side of equation (6.31) specifies the diffusion contribution to
I's, while the second term gives the advective contribution. The above dual-porosity
transport model reduces to the first-order model for conditions of steady-state flow
in the fracture (macropore) region and no flow in the matrix pore system
(gm =T, =0).

The dual porosity model given by equations (6.25) through (6.31) contains two
water-retention functions, one for the matrix and one for the fracture pore system,
but three hydraulic conductivities functions: K;(hy) for the fracture network, K, (A,,)
for the matrix, and K,(k) for the fracture-matrix interface. The K;(hs) function is
determined by the structure of the fracture pore system; that is, the size, geometry,
continuity, and wall roughness of the fractures, and possibly the presence of fracture
fillings. Similarly, K,,(%,,) is determined by the hydraulic properties of single matrix
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blocks, and the degree of hydraulic contact between adjoining matrix blocks during
unsaturated flow. Finally, K, (k) is the effective hydraulic conductivity function to be
used in equaticn (6.28) for describing the exchange of water between the two pore
systems.

Several important features of preferential flow are illustrated here by using the
above variably saturated dual-porosity model to calculate the infiltration of water at
a constant rate of 50 cm/day into a 40-cm-deep structured soil profile that has an
initially uniform pressure head of —1000 cm. Water is allowed to infiltrate exclu-
sively into the fracture pore system, thus assuming that the matrix pore system at the
soil surface is sealed. The hydraulic properties of the fracture and matrix pore
systems (figure 6.6) are indicative of relatively coarse- and fine-textured soils, respec-
tively. The simulations assume a macroporosity of 5% (wr = 0.05), and rectangular
aggregates (8 = 3) that have a width of 2 cm (@ = 1 cm). The hydraulic parameters
for K,(h) were assumed to be the same as those for K,,(%,,), except for the saturated
hydraulic conductivity, which was decreased by a factor of 100. Figure 6.7 shows
simulated pressure head and water content distributions during infiltration. The
results indicate a rapid increase in the pressure head of the fracture pore system,
but a relatively slow response of the matrix (figure 6.7a). The resulting pressure head
gradient between the two pore systems causes water to flow from the fracture into the
matrix pore system (figure 6.7b), thus increasing the water content of the matrix
(figure 6.7c). Significant pressure head differences between the two pore systems are
still present when the infiltration front in the fracture system reaches the bottom of
the soil profile after about 0.08 days (figure 6.7a). Notice that the water transfer rate,
I',,, 1s highest close to the infiltration front, and gradually decreases toward the soil
surface (figure 6.7b). The shapes of the I, -curves reflect the combined effects on Iy
of the pressure head difference between the two pore regions (which decreases in
time) and the value of K, (which increases in time) at any point behind the wetting
front.

Figure 6.8 shows the simulated concentration distributions. Results are for the
infiltration of solute-free water into a structured medium that has a relative initial
concentration of 1. As expected, the solute concentration in the fracture pore system
initially decreases rapidly as solute-free water infiltrates (figure 6.8a). Water with a
relatively low concentration subsequently flows from the fracture into the matrix
pore system. At the same time, however, solutes begin to diffuse back from the
matrix into the fracture pore system because of the large concentration gradients
that develop between the two pore systems (figure 6.8a). The net solute transfer rate,
I';, eventually becomes negative, indicating a net transfer from the matrix into the
fracture pore system (figure 6.8b). The solute mass in the matrix pore system (13,,,¢,,,)
initially decreases only slightly (¢ = 0.01 days in figure 6.8c), but starts to decrease
more rapidly at later times (f > 0.04 days). The results in figure 6.8 illustrate the
extremely transient and complicated nature of transport in a structured medium that
involves vertical advective transport and dispersion, and horizontal mass transfer by
advection and diffusion. Simulations such as those shown in figures 6.7 and 6.8 may
be used to explain previously observed effects of several parameters on solute leach-
ing during transient flow, including soil surface boundary condition (Bond and
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Wierenga, 1990), water application rate (White et al., 1986; McLay et al., 1991), and
initial condition (Kluitenberg and Horton, 1990).

The potential value of process-based preferential flow simulations is further ittu-
strated in figure 6.9, which shows the sensitivity of the infiltration process to changes
in the hydraulic conductivity K, of the fracture~matrix interface. Results obtained
with a relatively large saturated conductivity, K; ,, of 1 cm/day (equal to the matrix
conductivity) closely approximate the limiting case of pressure head equilibrium
(figure 6.9a) with little or no preferential flow. The moisture front in this case reached
a depth of only 5 cm after 0.02 days. The water transfer rates (figure 6.9b) were so
high that the two pore systems quickly approached equilibrium (X, = 1 cm/day).
By comparison, for the smallest K, (0.001 cm/day), water percolated rapidly down-
ward through the fracture pore system to a depth of 35 cm during the same time
period (¢t = 0.02 days or 20 min). This last situation represents an extreme case of
preferential flow with significant pressure head differences between the two pore
systems (figure 6.9a).

The results in figure 6.9 indicate that equilibrium between the fracture and matrix
pore systems should be expected when the hydraulic conductivity, K ,, of the
matrix—fracture interface is roughly equal to the conductivity of the soil matrix
(assuming a fracture spacing of 2 cm). For preferential flow to initiate in the present
example, K , must be much less than K of the matrix. This conclusion is consistent
with experimental studies that suggest that a soil aggregate can have a higher local
bulk density (and hence lower conductivity) near its surface than in the aggregate
center, in part because of the deposition of organic matter, fine-texture mineral
particles, or various oxides and hydroxides on the aggregate exteriors or macropore
walls. For example, Wilding and Hallmark (1984) noted that ped argillans can
markedly reduce rates of diffusion and mass flow from ped surfaces into the soil
matrix. Cutans, which consist of coatings with modified physical, chemical, or bio-
logical properties, often have also preferred orientations parallel to soil aggregate
surfaces. Unsaturated fractured rock formations may exhibit similar features—that
18, fracture skins (Moench, 1984), or other types of coatings (Pruess and Wang, 1987)
made up of fine clay particles, calcite, zeolites or silicates—which may reduce the
hydraulic conductivity. Finally, preferential flow within the macropores or fractures
themselves can also contribute to a lower effective K, (h). Situations like this can
restrict water and solute exchange between the two pore systems (notably imbibition
into the matrix) to only a small portion of the total interface area (Hoogmoed and
Bouma, 1980), even in capillary-size pores (Omoti and Wild, 1979). Hydrophobic
fracture surfaces can similarly limit fluid exchange between the two pore systems.

Application of the variably saturated dual-porosity model requires several
hydraulic and other parameters that are not easily measured. Estimates for the K-
and K,,-functions (figure 6.6) may be obtained by assuming that K is primarily the
conductivity function in the wet range, while X,, is the conductivity in the dry range
~ (Peters and Klavetter, 1988; Othmer et al., 1991; Durner, 1994). Obtaining accurate
estimates for the hydraulic properties of the fracture pore system from the composite
curves requires that the hydraulic functions be very well defined in the wet range.
This problem is indirectly demonstrated by figure 6.6a, which was obtained by
assuming that the fracture pore system comprises 5% of the porous medium.
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Notice that the retention function of the matrix differs only minimally from that of
the composite medium. Hence, it may be very difficult, in practice, to estimate
separate soil water-retention curves of the fracture and matrix pore systems by
using bulk soil measurements that generally contain some noise. By contrast, it
appears more promising to assess the contributions of macropores from carefully
measured bulk hydraulic conductivity functions near saturation (e.g., Smettem and
Kirby, 1990; Mohanty et al., 1997).

Finally, we note that the dual-porosity model discussed here assumes applicability
of the Richards equation, and hence of Darcy’s law. This assumption may not be
strictly correct for the fracture pore system. However, given the uncertainties in all of
the physical and chemical processes related to preferential flow, the real issue may
not necessarily be the validity of Darcy’s law as such, but whether Darcy’s law—even
if formally invalid—can still provide a useful qualitative description of the prefer-
ential-flow process. Alternative descriptions of the flow regime in fractures, such as
Manning’s equation for turbulent overland flow, kinematic wave theory, or simple
gravity-flow models, may be too elaborate for routine use. Moreover, some of these
approaches do not have provisions for flow to occur from the micropores back into
the fractures—for example, at or near the bottom boundary of a coarse-textured soil
horizon overlaying a fine-textured horizon.

Numerical Methods

A large number of analytical solutions have been published for one- and multidi-
mensional transport problems (e.g., Javandel et al., 1984; Leij et al. 1993; Toride et
al., 1993). While useful for simplified analyses, analytical solutions are generally not
available for more complex situations, such as for transient variably saturated flow
or situations that involve nonlinear sorption or degradation, in which case numerical
models must be employed. In this section, we give a brief review of recent advances in
numerical methods for solving subsurface flow and transport problems. We will not
address issues that pertain to the discretization of multiphase “black oil” or compo-
sitional simulators. A detailed discussion of discretization issues for multiphase
compositional problems can be found in Unger et al. (1996).

Numerical Solution of the Richards Equation

A variety of numerical methods may be used to solve the variably saturated flow and
transport equations (e.g., Huyakorn and Pinder, 1983; Sudicky and Huyakorn,
1991). Early numerical variably saturated flow models generally used classical finite
difference methods. Integrated finite differences (Narasimhan and Witherspoon,
1976), control-volume finite element techniques (Forsyth 1991; Therrien and
Sudicky, 1996), and Galerkin finite element methods (Huyakorn et al., 1986:
Simtinek et al., 1994) became increasingly popular since the mid-1970s. Time and
space discretization of the Richards equation using any of these methods leads to a
nonlinear system of algebraic equations. These equations are most often linearized
and solved using the Newton-Raphson or Picard iteration methods. Picard iteration
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is widely used because of its ease of implementation, and because this method pre-
serves symmetry of the final system of matrix equations. The Newton-Raphson
iteration procedure is more complex and results in nonsymmetric matrices, but
often achieves a faster rate of convergence and may be more robust than Picard
iteration for highly nonlinear problems (Paniconi and Putti, 1994; Forsyth et al.,
1995). In principle, the Picard scheme is linearly convergent, and therefore should
converge more slowly than the quadratically convergent Newton-Raphson scheme.

The basic approach for discretizing and solving the Richards equation depends
upon the flow formulation being used—that is, the s-based, the f-based, or the mixed
formulation. Celia et al. (1990) suggested that numerical solutions based on the
standard h-based formulation of the Richards equation often yield poor results,
characterized by large mass balance errors and incorrect estimates of the pressure
head distributions in the soil profile. They solved the mixed formulation of the
Richards equation using a modified Picard iteration scheme which possesses mass-
conserving properties for both finite element and finite difference spatial approxima-
tions. Therrien and Sudicky (1996) also solved the mass-conservative mixed form of
the Richards equations, but implemented the more robust Newton-Raphson linear-
ization method and a highly efficient algorithm to construct the Jacobian matrix
(Forsyth and Simpson, 1991). Milly (1985) earlier presented two mass-conservative
schemes for computing nodal values of the water capacity in the 4-based formulation
to force global mass balance. Several numerical schemes based on different types of
pressure head transformations were recently also presented (Hills et al., 1989; Ross,
1990; Pan and Wierenga, 1995). Hills et al. (1989) showed that the §-based form of
the Richards equation can yield fast and accurate solutions for infiltration into very
dry heterogeneous soil profiles. However, the 6-based numerical scheme cannot be
used for soils that have saturated regions. Kirkland et al. (1992) expanded the work
of Hills by combining the 6-based and h-based models to yield a transformation
applicable also to variably saturated systems. They defined a new variable that is a
linear function of the pressure head and water content in the saturated and unsatu-
rated zone, respectively. More recently, Forsyth et al. (1995) proposed a robust and
highly efficient algorithm in which variable substitution is used to switch between 6
or h as the primary variables when constructing the Jacobian matrix for Newton-
Raphson iteration. The primary variable switch is made after each Newton iteration
in different parts of the computational domain as a function of the state of the degree
of saturation in those parts. Using this approach, and also by employing a monotone
discretization (i.e., upstream weighting of relative permeabilities) that guarantees
that saturations always remain in the physical range, they demonstrated that an
order-of-magnitude execution speedup can be achieved for difficult problems that
involve infiltration into dry, heterogeneous soils. They also pointed out that the
method of Kirkland et al. (1992) is not necessarily monotone because of its partially
explicit nature, and that mass balance errors can occur at the transition between the
saturated and unsaturated zones. Upstream weighting of relative permeabilities is
very much recommended over central weighting since the latter method can intro-
duce oscillations (i.e., negative saturation values) for difficult problems, and thus can
cause complete failure of the nonlinear iteration process (Forsyth, 1991; Therrien
and Sudicky, 1996). Because of the self-sharpening properties of soil moisture fronts,
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the use of upstream weighting in the numerical solutions of the Richards equation
generally does not introduce excessive smearing of saturation fronts, unlike its use in
solutions of the advection—-dispersion equation.

Numerical Solution of the Transport Equation

Numerical methods for solving the advection—dispersion equation may be classified
into three groups: (1) Eulerian, (2) Lagrangian, and (3) mixed Lagrangian-Eulerian
methods. In the Eulerian approach, the transport equation is discretized by means of
a usual finite difference or finite element method that uses a fixed grid system. For the
Lagrangian approach, the mesh either deforms and moves along with the flow path,
or the mesh is assumed to be stable in a deforming coordinate system. A two-step
procedure is followed for a mixed Lagrangian-Eulerian approach. First, advective
transport is considered, using a Lagrangian approach in which Lagrangian concen-
trations are estimated from particle trajectories. Subsequently, all other processes,
including sinks and sources, are modeled using the standard Eulerian approach that
involves any finite element or finite differences method, thus leading to the final
concentrations.

Standard finite difference and Galerkin or control-volume type finite element
methods belong to the first group of Eulerian methods. Finite differences and finite
elements methods provided the early tools for solving solute transport problems and,
in spite of some limitations as discussed below, are still the most popular methods
being used at present. Numerical studies have shown that both methods give good
results for transport problems where dispersion is relatively dominant as compared
with advective transport (e.g., as indicated by the grid Peclet number). However,
both methods can lead to significant numerical osciilations and/or dispersion for
advection-dominated transport problems. The Eulerian methods have been found
to be very reliable and accurate when applied to quasi-symmetric problems when
diffusion dominates the transport process. The advection term brings nonsymmetry
into the governing solute transport equation and, as a result, compromises the
success of Eulerian methods when applied to advection-dominated transport pro-
blems. By selecting an appropriate combination of relatively small space and time
steps, it is still possible to virtually eliminate most or all oscillations. Alternatively,
the spatial grid system may be refined using a “zoomable hidden fine-mesh”
approach (Yeh, 1990), or by implementing local adaptive grid refinement
(Wolfsberg and Freyberg, 1994). However, there is an additional computational
cost with this approach, and the handling of natural grid irregularities due to mate-
rial heterogeneity or other domain features can be problematic. Criteria for mini-
mizing or eliminating oscillations and reducing numerical dispersion when solving
the linear advection—dispersion equations are well known; that is, the product of the
local Peclet (vAx/D) and Courant (vA¢/Ax) numbers should be less than 2 (At is the
time step and Ax is the nodal spacing). When small oscillations in the solution can be
tolerated, this criterion can be increased to about 5 or 10. Monotonicity conditions
and numerical smearing are also influenced by the type of temporal discretization
being used. For example, while fully implicit time-weighting schemes are monotone
(i.e., concentrations always fall within the physical range), they are more prone to
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numerical dispersion than central-in-time (Crank-Nicolson type) weighting which is
second-order correct. By comparison, monotonicity cannot be guaranteed with cen-
tral weighting unless the grid Peclet and Courant criteria are appropriately satisfied.
We refer to Unger et al. (1996) for a more thorough discussion of discretization
strategies that involve both the linear and nonlinear forms of the transport equation
in the context of multiphase compositional modeling. In particular, they discuss the
use of flux limiters and total variation diminishing (TVD) schemes for reducing
numerical dispersion in nonlinear multiphase compositional transport problems.

Upstream weighting methods virtually eliminate numerical oscillations, even for
purely advective transport, but a disadvantage is that they may create unacceptable
numerical dispersion. Huyakorn and Nilkuha (1979) and Yeh (1986) used weighting
functions that are different for the spatial derivatives than for other terms in the
finite element solution of the transport equation. Their approach places greater
weight on the upstream nodes within a particular element. Huyakorn and Nilkuha
(1979) suggested, for this purpose, nonorthogonal basis functions, whereas Yeh
(1986) used orthogonal functions. Petrov-Galerkin methods require the use of higher
order weighting functions, which makes their implementation more difficult and
more costly than classical Galerkin finite element methods. Another alternative for
overcoming numerical dispersion is the use of higher order temporal and spatial
approximation (e.g., van Genuchten and Gray, 1978). Such higher order approxima-
tions, however, are computationally more expensive and often produce numerical
oscillations.

While Lagrangian methods (or methods of characteristics) may substantially
reduce or even eliminate problems with numerical oscillations (e.g., Neuman and
Sorek, 1982), they can also introduce other problems, such as nonconservation of
mass. Lagrangian methods are also relatively difficult to implement in two and three
dimensions when an unstructured (nonrectangular) spatial discretization scheme is
used. Instabilities that result from inappropriate spatial discretization sometimes
occur during longer simulations as a result of a deformation of the stream function.
Furthermore, nonrealistic distortions of the results may occur when modeling the
transport of solutes that are undergoing certain sorption/exéhange or precipitation
reactions.

Mixed Eulerian-Lagrangian approaches have been reported by several authors
(e.g., Molz et al., 1986; Sorek, 1988; Yeh, 1990, among others). In view of the
different mathematical character of the diffusive (parabolic) and advective (hyper-
bolic) terms in the advection—dispersion equation, the transport equation can be
decomposed into a mixed problem that consists of a purely advection problem,
followed by a diffusion-only problem. Advective transport then is solved with the
Lagrangian approach, while all other terms of the transport equation are solved
using Eulerian methods. The trajectories of the flowing particles may be obtained
in a variety of ways. For example, Molz et al. (1986) used single-step reverse particle
tracking in which the initial position of particles arriving at the end of a time step af
fixed nodal points is calculated for each time step. The use of continuous forward
particle tracking has similar disadvantages as the Lagrangian approach since com-
plex geometric regions are, again, difficult to handle. To obtain good results, it may
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be necessary to follow a large number of particles, thereby quickly leading to exces-
sive computer time and memory.

Still other solution methods exist, such as the use of a combination of analytical
and numerical techniques. For example, Sudicky (1989) and Sudicky and McLaren
(1992) modeled solute transport by using Laplace transforms with respect to time
and Galerkin finite elements for the spatial domain. The use of Laplace transforms
avoids the need for intermediate simulations (time-stepping) between the initial con-
dition and the points in time for which solutions are needed, while also needing less
stringent requirements for the spatial discretization. These features lead to computa-
tional efficiency, especially for large-time simulations. Recently, several methods
have also been suggested that make use of local analytical solutions of the advec-
tion—dispersion equation in combination with finite differences (Li et al., 1992). We
emphasize that combinations of analytical and numerical techniques have one
important limitation. Because, for example, the Laplace transform eliminates time
as an independent variable in the governing solute transport equation, all coeffi-
cients, such as water content, flow velocity, and retardation factors, must be inde-
pendent of time. This limitation precludes the use of combination methods for

solving coupled, transient variably saturated flow and transport problems typical
of many field situations.

Matrix Equation Solvers

Discretization of the governing partial differential equations for water flow and
solute transport generally leads to a system of linear matrix equations:

[4){x} = {b} (6.32)

in which {x} is an unknown solution vector, {b} is the known right-hand side vector
of the matrix equation, and [A4] is a sparse banded matrix that is symmetric for water
flow if the modified Picard procedure is used, but asymmetric for water flow if the
Newton-Raphson method is used. Matrix [A4] is generally asymmetric for solute
transport, unless advection is not considered in the formulation. Technological
breakthroughs in computer hardware and increased incentives to simulate complex
coupled flow and transport problems in large three-dimensional systems has spurred
the development and use of highly efficient and robust iterative matrix solvers.
Robustness of the solver is essential to handle stiff matrices that result from extreme
contrasts in material properties and, in the situation of variably saturated flow,
severe nonlinearity.

Traditionally, matrix equations have been solved by means of such direct meth-
ods as Gaussian elimination and LU decomposition. Although these methods
usually take advantage of the banded nature of the coefficient matrices, they
have several disadvantages as compared with iterative methods. For example, for
two-dimensional problems, the operation count for a direct solver increases
approximately by the square of the number of nodes, whereas for an iterative-
solver the operation count is typically 1.5 or less (Mendoza et al, 1991;
VanderKwaak et al., 1995, among others). A similar reduction also holds for the
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memory requirement since iterative methods do not require storage of nonzero
matrix elements. Memory requirements, therefore, increase at a much smaller
rate with the size and dimensionality of a problem when iterative solvers are
used (Mendoza et al., 1991; VanderKwaak et al., 1995). Round-off errors also
represent less of a problem for iterative methods as compared with direct methods.
This is because round-off errors in iterative methods are self-correcting
(Letniowski, 1989). Finally, for time-dependent problems, a reasonable approxima-
tion of the solution (i.e., the solution at the previous time step) exists for iterative
methods, but not for direct methods (Letniowski, 1989). In general, direct methods
are more appropriate for relatively small problems that involve a couple of thou-
sand nodes, while iterative methods are more suitable for the larger problems. This
issue is of critical importance given that many research problems, as well as certain
practical vadose zone field applications, may require discretizations that involve
tens to hundreds of thousands of nodes.

Many iterative methods have been used in the past for handling large sparse
matrix equations. These methods include Jacobi, Gauss-Seidel, alternating direction
implicit (ADI), successive overrelaxation (SOR), block successive overrelaxation
{BSSOR), successive line overrelaxation (SLOR), and strongly implicit procedures
(SIP), among others (Letniowski, 1989). More powerful preconditioned accelerated
iterative methods, such as the preconditioned conjugate gradient method (PCG)
(Meijerink and van der Vorst, 1977; Kershaw, 1978; Behie and Forsyth, 1983),
were introduced more recently. Sudicky and Huyakorn (1991) gave three advantages
of the PCG procedure as compared with other iterative methods: (1) PCG can be
readily modified for finite element methods with irregular grids, (2) the method does
not require arbitrary iteration parameters, and (3) PCG usually outperforms its
iterative counterparts for situations that involve relatively stiff matrix conditions.
The PCG methods can be used only for symmetric matrices. Since the system of
linear equations that results from discretization of the solute transport equation is
nonsymmetrical (the same is true when linearizing numerical solutions of the
Richards equation using Newton-Raphson iteration), it is necessary to either for-
mulate the transport problem such that a symmetric matrix results (Leismann and
Frind, 1989), or use an extension of PCG for nonsymmetrical matrices. Examples for
such an extension are the ORTHOMIN (generalized conjugate residual method,
Behie and Forsyth, 1984), GMRES (generalized minimal residual method, Saad
and Schultz, 1986), CGSTARB (conjugate gradient stabilized method, van der
Vorst, 1992), or the conjugate gradient squared (Letniowski, 1989; Paniconi and
Putti, 1994) procedures. v

Competitive iterative methods generally involve two operations: (1) initial pre-
conditioning, and (2) iterative solution with a particular acceleration method—such
as CGSTAB. Incomplete lower—upper (ILU) factorization (among other methods,
such as incomplete Cholesky for symmetric matrices) can be used to precondition
matrix [A4]. This factorization leads to more casily inverted lower and upper trian-
gular matrices by partial Gaussian climination. The preconditioned matrix is subse-
quently repeatedly inverted using updated solution estimates, thus leading to a new
approximation of the solution. More details about the CGSTAB and ORTHOMIN
methods are given in the user’s guides of the WATSOLV (VanderKwaak et al., 1995)
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and ORTHOFEM (Mendoza et al., 1991). Letniowski (1989) also gave a compre-
hensive review of accelerated iterative methods, as well as preconditional techniques.
The ORTHOMIN procedure is becoming increasingly popular in variably saturated
flow and contaminant transport simulations (Gambolati et al., 1986; Kirkland et al.,
1992; Simtnek et al., 1994; Therrien and Sudicky, 1996). Recent numerical experi-
mentation for problems that involve difficult-to-solve variably saturated flow pro-
blems indicate that CGSTAB outperforms ORTHOMIN. This is because
ORTHOMIN sometimes tends to stagnate and hence fails to satisfy a specified
convergence criterion after many iterations.

Concluding Remarks

The past few decades have produced tremendous advances in our ability to mathe-
matically describe and simulate vadose zone flow and chemical transport processes.
Careful laboratory and field experimentation has yielded much new information, not
only on the form of fundamental constitutive relations, but alsc on the controlling
effects of heterogeneities, fractures, and macropores on flow and transport at the
field scale. Process-oriented deterministic and stochastic theories have achieved rea-
sonable success in providing new qualitative and quantitative information on the
hierarchical nature of heterogeneities and the scaling-up of relevant parameters and
constitutive relations for use in large-scale simulators. The development and imple-
mentation of modern numerical algorithms for solving the nonlinear Richards equa-
tion in an efficient and robust fashion now makes it possible to routinely simulate
large-grid, three-dimensional vadose flow problems on modern workstations. Similar
strides in algorithm development have been made with regard to solutions of the
solute transport equation and, for example, its coupling to multicomponent geo-
chemical speciation models. One important key enabling us to handle increasingly
larger scale three-dimensional flow and transport problems has been the implemen-
tation of highly efficient iterative sparse-matrix equation solvers, such as those based
on ORTHOMIN and CGSTAB acceleration.

In spite of the modeling advances, much remains to be done. For example, field
testing of recently developed scale-up theories for application to heterogeneous
field settings is generally lacking, and numerical models designed to predict vadose
zone flow and chemical transport processes often yield only qualitative similarities
to real-world ficld observations. Attempts to improve the predictive capabilities of
recent models have typically involved the introduction of additional fitting para-
meters that are elusive and perhaps impossible to measure independently. This
aspect is disconcerting given that practitioners, planners, and regulators are
increasingly relying upon model predictions to establish far-reaching policies. It
is our belief that a harmonious blend between laboratory research, field-scale
experimentation, and modeling-based research is key to at least maintaining, and

perhaps accelerating, the pace of advancement that we have seen over the last
couple of decades. ‘
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